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UNCLASSIFIED ABSTRACT

BUCKLING OF CIRCULAR CYLINDRICAL TR-0158(S3820-10)-l
SHELLS WITH MULTIPLE ORTHOTROPIC September 1967
LAYERS AND ECCENTRIC STIFFENERS,
by Robert M. Jones

An exact solution is derived for the buckling of a circular cylindrical
shell with multiple orthotropic layers and eccentric stiffeners under
axial compression, lateral pressure, or any combination thereof.
Classical stability *heory (membrane prebuckled shape) is -sed for
simply supported edge boundary conditions. The present theory
enables the study of coupling between bending and extension due to
the presence of different layers in the shell and to the presence of
eccentric stiffeners. Previous approaches to stiffened multilayered
shells are shown to be erratic in the prediction of buckling results
due to neglect of coupling between bending and extension.
(Unclassified Report)
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NOMENCLATURE

a = ring spacing (Figure 1)

A = cross-sectional area of a stiffener

A.. = coefficients in stability criterion [Eq. (18)]

b = stringer spacing (Figure 1)

B.. = extensional stiffness of the layered shell

B (By) = extensional stiffness of the orthotropic stiffness
x y

layer in the x-(y-) direction

B = in-plane shearing stiffness of the orthotropic stiffness
xy

layer

C.. = coupling stiffness of the layered shell

D.. = bending stiffness of the layered shell13

D x(Dy = bending stiffness of the orthotropic stiffness layer

in the x-(y-) direction

D xy = twisting stiffness of the orthotropic stiffness layer

E = Young's modulus of a stiffener

E k E k = Young's moduli in x and y directions,
xx' yy

respectively, of the kth shell layer

G = shearing modulus, E/(2(l + v)), of a stiffener

G k = shearing modulus of the kt h shell layer in x-y plane
xy

I= moment of inertia ot a stiffener about its centroid

= torsional constant of a stiffener

IA comna indicates partial differentiation with respect to the subscript
following the comma. The prefix 6 denotes the variation during
buckling of the symbol which follows.
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NOMENCLATURE (Continued)

K k  = function of material properties of the kth
1j

layer [Eq. (2)]

L = length of circular cylindrical shell (Figure 1)

m = number of axial buckle halfwaves

= moments per unit length
MM

Mxyl 
yx

n = number of circumferential buckle waves

N = number of layers

Nx, Ny, Nxv = in-plane forces per unit length

N' i14 = applied axial and circumferential forces per unit

length

p = external or hydrostatic pressure

R = shell reference surface radius (Figures I and 2)

tk  = thickness of kth shell layer

u,v, w = axial, circumferential, and radial displacements from

a membrane prebuckled shape

x, y, z = axial, circumferential, and radial coordinates on shell

reference surface (Figure 1)

7 distance from stiffener centroid to shell reference

surface (Figure 1), positive when stiffener on outside

Ex9' y, Yxy strains

(, 2, 3  - variations in reference surface strains [Eq. (5)]

b k distance from inner surface of layered shell to outer

surface of k th layer

distance from inner surface of layered shell to

reference surface
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NOMENCLATURE (Continued)

k (V k = Poisson's ratio for contraction in the y(x) direction
xy yx

due to tension in the x(y) direction

VxyB(VvxB) = so-called extensional Poisson's ratio for contraction

in the y-(x-) direction due to tension in the x-(y-)

direction

VxyD(VyxD) = so-called bending Poisson's ratio for curvature in the

y-(x-) direction due to moment in the x-(y-) direction

rx' 0 TXy = stresses

Xly X2, X3 = variations in reference surface curvatures [Eq. (6)]

Supers c ript

k = kth shell layer

Subscripts

th
k = k shell layer

r = ring

s = stringer
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SECTION I

INTRODUCTION

The first work in the area of stability of eccentrically stiffened

shells was done by Van der Neut (Ref. 1) about twenty years ago.

However, his conclusion that the buckling load under axial compres-

sion of an externally stiffened shell can be as high as two or three

times that of an internally stiffened shell went essentially unnoticed.

More recently, Baruch and Singer (Ref. 2) and Block, Card, and

Mikulas (Ref. 3) presented theories which are considered basic in the

field. Since 1965, work in the area of eccentrically stiffened shells

has expanded so much that it is impractical to mention more than a

few significant papers. McElman, Mikulas, and Stein (Ref. 4)

extended the original work to include the effect of stiffeners on vibra-

tion and flutter. Correlation between theory and experiment was

reported for static buckling loads by Card and Jones (Ref. 5). The

effect of initial impe.-fections was considered by Hutchinson and

Amazigo (Ref. 6). Block (Ref. 7) treated discrete ring spacing,

prebuckling deformation, and load eccentricity. Finally, plastic

buckling was discussed by Jones (Ref. 8).

The object of the present paper is to extend previous theories

to consideration of stability of circular cylindrical shells with

multiple orthotropic layers and eccentric stiffeners (see Figure 1).

Classical stability theory, which implies a membrane prebuckled

shape, is used for the simply supported edge boundary conditions

N x - v - w = 6Mx = 0. The layers have orthotropic material

x
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Figure 1. Stiffened Multilayered Shell

properties with the principal axes of orthotropy coincident with the

shell coordinate directions. In accordance with most previous

theories, the stiffeners are treated as isotropir one-dimensional

beam elements and are averaged or "smeared out" over the stiffener

spacing. The torsional rigidity of the stiffeners is accounted for in

an approximate manner. The present theory enables the study/ of

coupling between bending and extension due to the presence of

different layers in the shell and to the presence of eccentric

stiffeners.

2
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SECTION II

DERIVATION OF THEORY

Expressions are obtained for the variations of stresses during

buckling in the kth layer of a multilayered shell in terms of the variations

of strains during buckling. Subsequently, the variations of stresses are

integrated over the shell and stiffeners in order to obtain expressions

for the variations in forces and moments during buckling. Finally, the

variations in forces and moments are substituted in Donnell-type

stability differential equations which are then solved to yield a closed-

form stability criterior in terms of the geometric and material properties

of the stiffened multilayered circular cylindrical shell.

A. ORTHOTROPIC STRESS-STRAIN RELATIONS

The stress-strain relations for an orthotropic material can be

written as

k K k +Kk
x 11 x 12 y

k k k
" - K 12 + K 2(1)
y lx K2y

k Kk y
T xy K 33 xy

where

k- k k ~k
1 xxxy yx;

k k E k -1vkK12 xy xx xy yx
(2)

Ek/( xy )x
k k

K k Gk
:. K33 = xy

wherein the superscript k denotes the k t h layer. The quantity

Ek (Eyk) is Young's modulus in the x (y) direction, G is the

3



shear modulus in the x-yj plane, and v k k is the Poisson's

ratio for contraction in the y (x) direction due to tension in the

x (y) direction. There are apparently five material constants perI' ~k E.k

layer; however, because of the re.:iprocal relations (vk k
xy xx

k E k ), there are actually only four independent constants.
Vyx yy

B. VARIATIONS OF STRESSES AND STRAINS DURING BUCKLING

During buckling, the stresses vary from their prebuckling values.

Let the variation be denoted by 6 ; then, from Eq. (1)

6r k = Kk 6f + Kk 6
x 11 x 12 y

6u k = Kk 6C + Kk 6C (3)
k 12

bk k x J2
xy 33 xy

where 6c x , 6E y, and 6Yxy denote the corresponding variations

in the strains during buckling. Because of the Kirchhoff-Love hypothesis,

the variations in strains during buckling are

b( = ( + zX'Ix 1 1

6c = ( + zX (4)y 2 2

Y + zX
xy 3 3

The z coordinate is measured from an arbitrary reference surface

(see Figure 1). In Eq. (4), Fl) ( 2 p and f 3 are the variations of the

reference surface strains
E l~ :u,x

C V1 + w/R (5)2 y

3 : U1 + VIX
'y x



and X1, X79 and X3  are the variations of the reference surface

curvatures

X= _ Wox

X -2
x -- - 1 w, (6)

X3 - 2Wxy

Upon substitution of Eq. (4), the variations in stresses in the kt h layer

can be written as

k k k60- K' 1 (E + zX) + K(1 (C2 + zX)
x 111 1

6yk = Kk + k ( + z (7)
y 12 ( 1 +ZX) K2 2  2 X 2)

6Tk =K k + zX

xy 33 (3 3

C. VARIATIONS OF FORCES AND MOMENTS DURING BUCKLING

The variations of forces and moments during buckling are obtained

by integration of the variations of stresses over the shell layers and

stiffeners. The effect of the stiffeners on the variations of forces and

moments is averaged or "smeared out" over the stiffener spacing.

6N 0.k dz + ±f6crdAb 1,x x

k s

6N f f60 kdz + 1 f6r dA (8)
-k:1 tk  Y a A y r

k r

N6N t k 6r kdz
xy k-1 xy

5



6M -~6a- zdz + 6a-zdA
k= A

kS

N|

k=l r 
(9)

N k k8G J s
M= f 6T zdz -

xyy Z 3

N kG rJrX6MfTkdz +~LX
SM =y 2S Z 2a 35

1 fth

where tk denotes the thickness of the kt h layer and N is the number

of layers. The variations of stresses for the stiffeners are based on

uniaxial isotropic reductions of the orthotropic stress-strain relations.

The integrations in Eqs. (8) and (9) yield

6N x = (BI + EsA s/b) c 1- BI1 + (CII + s E s A s / b) X

+ C 12

6N = + A/a) 1 (B2 2 +E r A 2 + 12 1 (10)

+ (C22 +%rErAr/a)X2

6Nxy = B33{3 + C33x3

6M (C + Z E A /b)£ + C + (D + 2 E A /b
x 11 s s s 1 C122 11 s s s

+ E I /b) X + D 2xss 1 12

6M C 1 2 1 + (C2 2 + z E A /a) 2 + Dl2xy r1i1 1 2(C(11

(D 2 + 2E A /a + E I /a)X Cont.
r r r r r 2next

page
6



Cont.
'D+G /2bfrom

6 M -C3D3 G J Z)X 3  ry
xy 33 3 3 r

page

6M =C E + (D 3 + GJ /Za)X 3yx 33 3 3

where

N k

~J k= 1 J

C 1 3E8 y- K 6A6
1j =Z2 ij[i'k k-1)i -(k 6-)

D.. N 11 Ki.[( 6 k 6 -3A (6.'-6k

+ 3A 2(6k 6k )

The stjffnesses in Eq. (x12) are due to Ambartsumyan (Ref. 9) and depend

on the location of the reference surface (see Figure 2). The reference

surface can be changed by varying il in order to study different

loading and boundary conditions. Geier (Ref. 10) obtains expressions which

arc more simple in appearance than Eq. (10), but which are more

difficult to utilize.

1 2

Figure 2. Cross Section of an~ N-Layered Shell

7



D. STABILITY DIFFERENTIAL EQUATIONS

The Donnell-type stability iifferential equations for circular

cylindrical shells subjected to combinations of axial compression and

lateral pressure are

6N + 6N = 0
x, x xy, y

6N + 6N = 0xy, x y, y
(13)

- 6M + 6M -6M -6M + 6N /R
xa x x xy, xy yx, xy y, yy y

+N x w .+ Ny w, yy= 0

and the alternative force and geometric boundary conditions at x = 0

and L are chosen from the following sixteen possibilities (any set of

four alternatives in the followirg pairs c-onstitutes a set of boundary

conditions).

6N = 0 or u = 0
x

6N = 0 or v = 0xy

(14)
6M + 6M + N w, = 0 or w = 0x, x yx, y x

6M = 0 or w, = 0
xx

Upon substitution of the expressions for the variations of forces and

moments during buckling [Eqs. (10) and (11)] and the variations of

reference surface strains and curvatures [Eqs. (5) and (6)] , the
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stability differential equations become

(B 1 1 + E A /b) u, + B 1 2 (v, +W, x/R)

+ B 3 3 (u, + V, xy) - (C 1 + EsAs/b)w,

- (C 1 2 + 2C 3 3 ) w, = 0

BU12 xy + (Bz2 + ErAr/a)(v, y+W, yR)

+ B33 (U9 xy + V1 xx - (C12 + 2C33 Wyxxy

- (C22 +£ErAr/Ia) w, =0
r r yyy

(B12/R) u, x - (C 1 1 + -s EsAs/b) u, O - (C 1z + 2C 3 3 )(up xyy

+ V, xxy) + (1 /R)(B22 + Er A r/a)(v, + w/R)

+ (C 2 2 +Ir E rA r/a) v, - (2C 1 2 /R) w,

+ (2 /R)(C 2 2 + E A /a) w + (Dll + 2 E : A /b22 r r r yys s s

- E I /b) w, + (4D + 2D + G J /bs s ~ xxxx (433 12 s

+ G /a, w, + (D + izE A /a + E I /a) w,
r- xxyy (22 r r r r r yyyy

+ N x W1 + N Yw, Y = 0
x xx y 'yy

E. STABILITY CRITERION

It is desired to find the solution to the stability differential

equations for the simply supported edge boundary conditions

6N -v w - 6M 0 (16)

x x

f.9



The following buckling displacements satisfy the boundary conditions of

Eq. (16):

u = U cos(miix/L) cos (ny/R)

v = V sin(mirx/L) sin (ny/R) (17)

w- W__ sin(mirx/L) cos (ny/R) j

(where u, v, and W are the amplitudes of the buckling displacements) and

are substituted in the stability differential equations [Eq. (15)] . In

order to obtain a nontrivial solution to the resulting equations, the

determinant of the coefficients of U, V, and W must be zero, and the

following stability criterion results:

ZAI3AI A Az

q N(mrr/L)2 + N(n!P)2 = A 3 + A2  3  12 112)3(18)

+ A3 (A12 A23 A13A)

] where

A1 1  - (B 11 + E A /b)(mTr/L) 2 + B (n/R)2

I A 12  (B 12 + B 3 3 )(mlT/L)(n/R)

A 1 3 = (B 1 ,/R)(mTr/L) + (Cll + s E sAsb)(rr/L)

+ (C1 + 2C 3 3 )(mTr/L)(n/R) (19)
Cont.

A 22 B B33n(Tr/L) 2  + (B22 + E A !a)(n/R)n
A2 B22 r r next

A2 3 (C12 2C 3 3 )(rr T/L) 2 (n/R) + (I /R)(B 22 + E rAr/a)(n/R) page

(C22 + r E rAr/a)(n/R)3

10



A3 3  (DI + E /b+zi 2 E A /b)(mrrr/L) 4
33 i s s s s (19)

+ (4D33 + ZD + GSs/b +G rJ r/a)(mir/L) 2(n/R)2 Cont.

from

+ (D 2 2 + E I /a + z rE A r/a)(n/P. + (2CZ/R)(mir/L)Z pre.

4- (2/R)(C2 2 + r E rA r /a)(n/R) 2 + (1/R 2 )(B 22 + Er Ar/a) page

j The solution represented by Eq. (18) reduces to the slution of

Ref. 3 for stiffened single-layered isotropic circular cylindrical shells.

In addition, stiffener eccentricity is mere obviously accounted for in the

foregoing derivation than in the work of Geier (Ref. 10)

The buckling load under axial compression is obtained from

Eq. (18) by equating N to zero and solving for N . Similarly, the
y x

buckling load under lateral pressure is obtained by equating Nx to zero

and solving for N (N = pR/t). Finally, the buckling load under
Yy

hydrostatic pressure is obtained by equating N to N /2 and solving for
x y

Ny. In addition, if N (Ny) is fixed, the critical value of N (N) (:an
y x y y x

be found. In this manner, an interaction curve between axial compresion

and lateral pressure can be obt.mied.

Because of the numerous parameters in Eq. (18) and the need to

investigate a large range of buckling modes to determine the lowest

buckling load, it is necessary from a practical standpoint to use a digital

computer for numerical work. In the computer program (see Appendixes

A and C), for a given number of axial halfwaves, m, and circumferential

waves, n. in the buckled shape, the appropriate buckline load is found.

The number n is varied in an inner DO loop for a fixed in until ail

relative minima of the buckling load are found within a given rang, cf

l!



values of n. The number m is then varied in an cuter DO loop so that

all relative minima are found. Finally, the absolute minimum buckling

load is selected from the relative minima.

11



SECTION III

NUMERICAL EXAMPLE

Because of the many geometrical properties in the theory.,

meaningful general results cannot be presented. Acccringly, a specific

numerical example is given to illustrate application of the theory. The

results are compared with results of previous approaches to the same

problem.

For this example, the stability of a ring-stiffened circular cylindri-

cal shell with two isotropic layers under hydrostatic pressure is considered.

The properties of the layers are

* =4 6 E1 6iE, =44xlO psi Ez 2 x 10 psi

V1 = V2  0.4

t 1 = 0.04in. t = 0.3 in.

The rings are of rectangular cross section with a height of 0.25 inch

and a thickness of 0.06 inch. The rings are on the inner surface of

layer one and have the same material properties as layer one. The shell

has a length of 12 inches and a radius of 6 inches to the middle surface

of layer one (which, in this case, is also the reference surface).

The hydrostatic buckling pressure of the above configuration is

shown as the solid line in Figure 3 as a function of ring spacing. The

results shown are for general instability (backling in which the rings

participate). The buckling pressures for panel instability (buckling

between rings) are much higher than the present results and, hence, do

not govern the stability of the present configuration. Other failure criteria,

e. g., yielding, are ignored for the purposes of this illustration of the

present analysis technique. The dashed curve in Figure 3 represents

13
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an orthotropic stiffness approach to the problem and is from 3 to 9

percent lower than the results from the present theory. These lower

results are due to neglect of coupling between bending and exten-

sion of the layered shell and the eccentric stiffeners in the ortho-

tropic stiffness approach. The solid curve with a single dot

represents a stiffened shell with a single equivalent Poisson's ratio

for bending (vD = 0. 331) used in both layers (Ref. 11) and is from

7 to 11 percent lower than the results of the present theory. Finally,

the solid curve with two dots represents a stiffened shell with a single

equivalent Poisson's ratio for extension (vB = 0. 115) used in both

layers (Ref. 11) and is from 14 to 18 percent lower than the results

of the present theory. The lower results for v D and vB are due to

neglect of coupling between bending and extension of the two shell

layers. Note that aL approaches previous to the present theory are

conservative for this !xample, i c., they yield lower buckling

piessures thi%-: ...dn actually be realized by the stiffened shell. For

other problems, the previous approaches can yield unconservative

results (Ref. 11). Thus, the importance of coupling between bending

and extension should not be overlooked.

15
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SECTION IV

CONCLUDING REMARKS

An exact solution, within the framework of classical stability theory,

is derived for the buckling of a circular cylindrical shell with multiple

orthotropic layers and eccentric stiffeners under axial compression,

lateral pressure, or any combination thereof. The simply supported edge

boundary conditions are 6N = v = w = 6M = 0. Thus, the presentbonar odiin ae6x x

solution can be regarded as a lower bound on results for practical shells

if initial imperfections, prebuckling deformations, and effects of discrete

stiffener spacing are ignored.

A numerical example is given to illustrate the effect of coupling

between bending and extension due to the presence of different layers in

the shell and to the presence of eccentric stiffeners. Comparison of the

present theory is made with previous approaches such as use of a single

equivalent Poisson's ratio in all layers of a layered shell and orthotropic

treatment of stiffened shells. The buckling predictions of the previous

approaches, in which coupling is neglected, ai e seen to be erratic in that

they are sometimes conservative and sometimes unconservative. Thus,

the importance of ccupiing between bending and extension should not be

over] ooked.

17
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APPENDIX A

DESCRIPTION OF COMPUTER PROGRAM

A computer program was written to evaluate the closed-form

stability criterion, Eq. (18), for an arbitrary range of values of the

buckling mode parameters m and n and to select subsequently

the lowest buckling load in the range. Program card decks are

available upon request to the Aerospace Corporation, San Bernardino

Operations, Mathematics and Computation Center. Specific charac-

teristics and the usage of the program are desc-.ibed in the following

discussion.

A. 1 GENERAL CHARACTERISTICS

The basic capability of the program is represented by Eq. (18)

which is valid for the stability of circular cylindrical shells with

multiple orthotropic layers and eccentric stiffeners under axial

compression, lateral pressure, or hydrostatic pressure. The

boundary condition,- at the edges are 6 N = v = w =6M = 0 . Thex x

orthotropic material properties for each layer of thickness, tk

are E k E , vk , vk (recall that because of the reciprocal
xx yy ,xy yx

krelations only three are independent) and G . It should be notedxy

that the principal axes of orthotropy must coincide with the shell

coordinates. The geometrical properties for the stiffeners are:

area (A), moment of inertia about the stiffener centroid (I), eccen-

tricity (z), torsional constant (J) , and spacing. The stiffeners are

isotropic; hence, E and v are the only material properties required.

Because mainly algebraic operations are performed in the pro-

gram, the execution time is very small (less than I second per case).

19
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As far as is possible, mnemonic representations are used throughout

the program.

A. 2 ORTHOTROPIC STIFFNESS LAYER, _)SL

Block, Card, and Mikulas included an orthotropic stiffness

layer in their theory (Ref. 3) in order to treat corrugated shells, etc.

In the present program, a similar layer can be used in place of the 4

first layer of the multilayered shell if the reference surface is chosen

to be the middle surface of the orthotropic stiffness layer. The

orthotropic stiffness definitions reduce to the usual definitions for

an isotropic shell, i.e.,

B = E = B = Et/(l -vx y

Bxy [(1 -( )I ] BE Et/[Z(l +,,)]

D = D = Et 3 / [12(lv 2 )] (A- )

xyD xy =[(I - )/2] D- Et 3/[24(l +Y

VxyB = vyxB = vxyD VyxD = v

The orthotropic stiffnesses must satisfy the reciprocal relations

V xyBB x = V yxBBy and vxyDDx = V yxD . It is important to note

that vxy B , etc are, in some cases, not solely material properties,

but are also affected by the geometry, e. g., corrugated or layered

shells.

The orthotropic stiffness layer was used to describe the two-

layered eccentrically stiffened shell in Section Ill, Numerical

Example, in order to obtain the curve labeled Orthotropic Stiffness

Approach in Figure 3. Note that this approach neglects coupling

20



between bending and extension of the stiffeners and the layered shell

and also neglects coupling between bending and extension of the

layers.

Eccentric stiffeners can be added to the orthotropic stiffness

layer if the eccentricity is properly accounted for. The eccentricity,

ZR or ZS , is ordinarily input as the distance from the centroid to

the base of the stiffener. Subsequently, the eccentricity is adjusted

in the program to be the distance from the centroid of the stiffener to

the arbitrary reference surface of the layered shell. However, when

the orthotropic stiffness layer (OSL) is used, the reference surface

is fixed at the middle surface of the OSL . In order that the stiffener

bend about the middle surface of the layer to which it is attached,

it is necessary to modifv the input eccentricity such that, when

one-half the OSL thickness is added, the eccentricity totals one-

half the thickness of the layer to which it is attached plus the distance

from the base to the centroid of the stiffener.
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A. 3 INPUT PARAMETERS

The following is a list of input parameters and their format and

definitions:

C
C *CARD I FORMATISON) - PROBLEM TITLE
C
C *CARD 2 FORMATII9O6FI0.0O
C HL - NUMBER OF LAYERS INCLUDING ORTHOTROPIC STIFFNESS LAYER
C *RESTRICTED TO 9 IN DIMENSION LN19) AND BY FORMAT NO.6. THE USUAL THIN
C SHELL LIMITATIONS MUST BE TAKEN INTO CONSIDERATION AS WELL.
C OSL -ORTHOTROPIC STIFFNESS LAYER
C IF EQUAL TO O.NO OSL
C IF EQUAL TO 1.9OSL REPLACES LAYER ONEc LOAD - COVE NAME FOR TYPE OF LOAD
c IF EQUAL TO .ot AXIAL COMPRESSION

C IF EQUAL TO 2.9 LATERAL PRESSURE
C IF EQUAL TO 3.9 HYDROSTATIC PRESSURE
C MOtMF - INITIAL AND FINAL VALUES OF N, THE NUMBER OF AXIAL HALF-WAVES
C *MO CANNOT BE ZERO IN THE AXIAL AND HYDROSTATIC LOADING CONDITIONS.
C MO SHOULD BE I FOR FINITE LENGTH SHELLS.
C *IF NO ABSOLUTE MINIMUM LOAD IS FOUND OR IF THE RELATIVE MINIMA ARE
fC IFDECREASING WHEN MF, A MESSAGE IS PRINTED STATING THAT THE RANGE
C ON N IS INSUFFICIENT TO DETERMINE AN ABSOLUTE MINIMUM.
C *THE INTERVAL (MOv4MF) IS EXAMINED INDEPENDENTLY FOR THE AXISYMNETRIC
C BUCKLING LOAD WHICH IS THEN PRINTED AND ALSO SAVED FOR COMPARISON
C WITH THE ASYMMETRIC BUCKLING LOAD.
C *THE LONGER THE SHELL, THE hIGHER MF MUST BE.
C NONF - INITIAL AND FINAL VALUES OF N, THE NUMBER OF CIRCUMFERENTIAL
C UAVES
C *THE ENTIRE INTERVAL (NO9NF) IS EXAMINED EVEN IF A RELATIVE
4IC MINIMUM IS FOUND WITHIN THE INTERVAL.C eP 3 IS NORMALLY 2 BECAUSE A SEARCH FOR THE AXISYMMETRIC

C BUCKLING LOAD IS AUTOMATICALLY PROVIDED IN THE AXIAL
C AND NYDkOSTATIC PRESSURE LOADING CONDITIONS.
LNO CANNOT BE ZERO IN THE LATERAL PRESSURE LOADING CONDITION.

*N3 AND NO CANNOT BOTH BE ZERO IN THE HYDROSTATIC PRESSURE
C LOADING CONDITION.

'IF NO RELATIVE MINIMUM IS FOUND OR THE LOAD IS AGAIN
DECREASING AFTER ONE MINIMUM HAS BEEN FOUND WHEN N-NF,

C A MESSAGE !S PRINTED STATING THAT THE INTEVAL IS INADEQUATE.
C 'THE THINNER THE SHELL, THE HIGHER NF MUST BE.
C

C *CARDS 3 THROUGH NL*2 - FORMATIIEIO.31 - ORTHOTROPIC LAYER PROPERTIES
C LNII1 - LAYER NUMBER
C EXX(I) - MODULUS OF ELASTICITY OF THE ITH LAYER IN THE X-DIRECTION
C EYYII) - MODULUS OF ELASTICITY OF THE ITH LAYER IN THE Y-DIRECTION
C NUXYCI) - POISSONtS RATIO FOR CONTRACTION IN THE Y-DIRECTION DUE TO
C TENSION IN THE X-DIRECTION
C NUYXII) - POISSONIS RATIO FCR COtJTRACTION IN THE X-DIRECTION DUE TO
r TENSION IN THE Y-DIRECTION
C 'NOTE THAT BY THE RECIPROCAL RELATIONS NUXYOEXXnNUVX*EYY.
C GXY(i) - SHEAR MODULUS OF ITH LAYER FOR THE XY-OLANE.
C T(Ill - THICKNESS OF THE ITH LAYER
C 'IF AN ORTHOTRaPIC STIFFNESS LAYER IS USED, ALL PROPERTIES OF THE
C FIRST LAYER ARE ZERO.
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C *CARD OSL*iNL#31 - FORMATSIlO.3) - ORTHOTROPIC STIFFNESS LAYER PROPERTIES
C IX - EXTENSIONAL STIFFNESS IN X-DIRECTION
C IV - EXTENSIONAL STIFFNESS IN V-DIRECTiON
C BXY - SHEAR STIFFNESS IN XV-PLANE
C NUXYS- EXTENSIONAL POISSONSS RATIO FOR CONTRACTION IN THE V-DIRECTION
C DUE TO TENSIOP IN THE X-DIRECTION.
C TOSL - NAXINi THICKNESS OF OSL (USED AS Till IN STIFFNESS EQUATIONS
C FOR LAYERED CYLINDER)
C
C *CARD OSLONL+41 - FORNATI4EIO.3) - OSL PROPERTIES, CONTINUED
C OX - BENDING STIFFNESS IN X-DIRECTION
C DY - BENDING STIFFNESS IN V-DIRECTION
c DXY - TWISTING STIFFNESS OF XY-PLANE
c NUXYD- BENDING PCISSONIS RATIO FOR CURVATURE IN THE Y-DIRECTION
C DUE TO NONENT IN THE X-DIRECTION
C
C *CARD NL.*2*OSL.3 - FORNAT46EIG.31 - RING PROPERTIES
C ER - MODULUS OF ELASTICITY
C AR - CROSS-SECTIONAL AREA
C ZR - ECCENTRICITY (NEASUREC NEGATIVELY INWARD FROM INNER SURFACE OF
C COMPOSITE SHELL TO RING CENTROID IF RINGS ARE INTERNAL -

C POSITIVELY OUTWARD FROM OUTER SURFACE IF RINGS ARE EXTERNAL)
C IR - MOMENT OF INERTIA OF RING ABOUT ITS OWN CENTROID
C GRJR- SHEAR NODULUS*TORSION CONSTANT OF CROSS SECTION
C A - SPACING OF RINGS
C
C *CARD NL*.2OSL.4 - FORMAT(6EI0.31 - STRINGER PROPERTIES
C ESvASvZStIStGSJS98 - CORRESPCNO TO ABOVE RING PROPERTIES
C

C *CARD NL,2'OSL*5 - FORNAT13E10.3) - BASIC GEOMETRY
C L - LENGTH OF CIRCULAR CYLINDRICAL SHELL
C R - RADIUS TO REFERENCE SURFACE
C *16UST BE TO MIDDLE SURFACE OF OSL IF AN OSL IS PRESENT
C DELTA- DISTANCE FROM INNER SURFACE OF LAYERED CYLINDER TO REFERENCE
C SURFACE
C *MUST BE 1/200SL THICKNESS IF AN OSL PRESENT.
C *SHOULO GET DIFFERENT AXIAL BUCKLING LOADS WHEN DELTA VARIED.
C
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A. 4 OUTPUT

The output for each case is printed on one page if the sum of

the number of layers, LN, and the number of axial buckle halfwaves,

M , does not exceed 25 and, if, in addition, there is no more than

one relative minimum buckling load per value of M . If these con-

ditions are not met, additional pages are used as needed.

First, a user-specified case identification is printed. Next, the

input quantities are printed so that input errors can be identified.

I The orthotropic layer properties are printed and are followed by the

orthotropic stiffness layer (OSL) properties, if any. Next, the

ring and stringer properties are printed. Finally, the basic

geometry quantities, shell length, radius, and reference surface

location, are printed.

After execution of the program, the buckling load for axi-

symmetric deformation (absolute minimum in the range from M = 1

to M = 4*MF) is printed along with the value of M at which it

occurs. Subsequently, the asymmetric buckling loads (relative

minima for each value of M for the range from N = 2 to N= NF

are printed. The final result is the absolute m-nimum (axisymmetric

or asymmetric) buckling load for the entire range of M and N.

A typical output page is shown in Appendix B.
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APPENDIX B

EXAMPLE PROBLEM

The example chosen here is the configuration discussed in

Section III Numerical Example, in the main body of the report,

i. e., a ring- stiffened circular cylindrical shell with two isotropic

layers under hydrostatic pressure. Pertinent geometrical and

material properties are given in SectionIII. Ring spacing for this

example is 3 inches. The input data are shown in Table B-I.

Figure B- 1 illustrates the input form, and the computer output is

shown in Figure B-2.
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Table B-I

INPUT DATA FOR EXAMPLE PROBLEM

CASE IDENTIFICATION:
CONFIGURATION OF FIGURE 3 - ACTUAL NUI

Symbol Vaiue Symbol Value

NL LN (2) 2

OSL 0 EXX(Z) 2 x 106

LOAD 3 EYY(2) 2 x 106

M I NTJXY(2) 0.4

MF 10 NUYX(2) 0.4

N2 GXY(2) 0.7179 x 106

NF 20 T(Z) 0.3

LN(1) 1 ER 44 x 106

EXX(I) 44 x 10 AR 0.015

EYY(1) 44 x 106 ZR -0. 125

NUXY(1) 0 IR 0.7812 x 10- 4

NUYX(l) 0 GRJR 396
GXY(1) 22 x 106 A 3

T(1) 0.04 L 12

R 6

DELTA 0. 02
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APPENDIX C

FORTRAN LISTING OF COMPUTER PROGRAM

C ELASTIC OUCKLING OF SIMPLY SUPPORTED, ECCENTRICALLY STIFFENED CIRCULAR
C CYLINDRICAL ShELLS WITH MULTIPLE CRTNOTROPIC LAYERS UNDER AXIAL COMPRESSIONI
C LPTERAL PRESSURE OR HYDROSTATIC PRESSURE
C
C
C READ STATE94ENT FORMATS -- BOLS 1

1 FCqMAT(SGH 801.5 2
1 801.5 3

2 F'JRAT(1O,7?F10.OI BOLS 4
3 a"JRMAr(8EIO.3) SCIS 5

C WRITE STATEMENT FORMATS - - 801. 6
4 FORMAT(90N ELASTIC SUCKLING OF SIMPLY SUPPORTED, ECCENTRICALLY STIBOLS 7
IFFENED CIRCULAR CYLINDRICAL Sl-ELLS/57H WITH MULTIPLE ORTHOTROPIC LGOLS a
ZAYERS UNDER AXIAL COMPRESSION1 8CLS 9
5 POPMAT19CH ELASTIC BUCKLING OF SIMPLY SUPPORTED, ECCENTRICALLY STIBOLS 10
IFFENED, CIRCULAR CYLINDRICAL SI-ELLS/56H WITH MULTIPLE ORTHOTROPIC LOCLS 11
2AYERS UNDER LATERAL PRESSURE)3 BOLS 12

6 FORMAT(90H ELASTIC BUCKLING OF SIMPLY SUPPORTED, ECCENTRICALLY STISOLS 13
IFFh ED CIRCULAR CYLINDRICAL SHELLS/60H WITH MULTIPLE ORTHOTROPIC LUOLS 14
2AYERS UNCER IhYDROSTATIC PRESSUM~E SOLS 15
7 FORMATI/4H MCsF4.D,5X3HMF-F4.0,SX3IINOsF4.O,5X3HNFsF4.O) SCLS 16
8 FOqMAT(/15H PROPERTIES OF vI1,19H ORTHOTROPIC LAYERS/6H LAYER#?X3HBOLS 17
IEXX,12X3HEYY,12X4HNUXY,11X4HNLiVX,11X3HGXY,12XlHT3 SOLS 16

9 FORMATIF4.Ot4X2I3.6v5(2XEI3.63) BOLS 19
10 FORMAT(/391- ORTHOTROPIC STIFFNESS LAYER PROPERTEES/5H SXwE11.4q3XSOLS 20

13H8Y=Elt.4,3X4H.XYuELI.4,3)6HhUXYBuEll.4I/5H OX-E11.4,30H3N~E11.4BOLS 21
2, 3X4H0XY-El1.*,3X6HNUXYDUE1I.4.p3X5HTOSLaEll.4J SOLS 22

11 FORMAT(/161 RING PROPERTIES,32X19HSTRINGER PROPEqTIES/5H ERsEl1.48CLS 23
1,5X3NIR=EI1.4,I5X3HES*EI1.4,5X3HISaEll.4/5H AR=E1I.4t3X$HGRJR=E1I8CLS 24
2.4.3 5X3HASaEI1.4,3X5HGSJS.EII.4/5H Zr -Ell.4.6X2HAnEl1.4,15X3HZS=ESOLS 25
311.4,6x2H8-EII.4) 8CLS -'6

12 FORMATI/15h BASIL CEOMETRY/5k LuE11.4,3X2HR=El3.6,3X6HOEL.TA-E12.BCtS 27
15) 501.5 28

13 FORMATI/22H PINIMUM NX FCR HuG IStE14.696H AT MmF4.OI9XIHMv7X21HRE8CLS 29
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ILATIVE MINIMA OF UX97XlIMI DOLS 30
14 FOOMAT:/2114 MINIMUM P FOR MalD IStE14.6 AT M.F.I/0XIM.ROHREGOLS 31

ILATIVE MINIMA OF PvOXiNNI DOLS 32
15 FORMAWIX11M97X2OHRELATIVE XmuiIa OF PoSzIXua DOLS 33
16 FORMAT7XF.O&XEI4.6, 101F4.0I DOLS 34
17 FORMAT1/21H ABSOLUTE MINIMUM h3-E14.6,SX2HM.oF4.O,512HM.F4.O) DOLS 35
16 FORATI/20H "SSOLUTE MINIMUM PwEI4.6vSX2HM-F4.OSZ2HNN.F4.OI DOLS 34

C ERROR MESSAGE FORMATS DOLS 37
19 FORMAT(109H THE RELATIVE MINIMA ARE STILL DECREASING* SO THE RANGES1OLS 38

ION M IS INSUFFICIENT TO DETERMINE AN ABSOLUTE MIM:MUM/I61 THE LASIOLS 39
2T VALUE IStEI4.6AN AT M.F4.OI DOLS 40:120 FORMAT(O2H THE LOAD IS DECREASING, SO THE RANGE ON N IS INSUFfICIE6OLS 41
INT TO DETERMINE ALL MINIMA) DOLS 42

21 FORMAT(/30h EQUAL OR NEAR EQUAL ORDIKATES/XF409,N ORDN1-5114.69 30OLS 43
IIOXF4.O/IXF4.O,&H ORDNE1.6,10XF4.O//I DOLS #4I'DIMENSION Kill 9),9KIZ(9),#922(g) K3319) #ut.4 9) ,EXX(91 9EYVI91 9NUV491 DLS 45
1,NUYXf9J ,GXYl9IvT19)vLNt91 60LS 46
REAL IR, ISM.MOMFNPLNNONFNR.NUXYNUVNUXV3.NUXYLLOA, BOtS 47
IKI IvK12,K22,K33vLNNM1 DOLS5 46
P1.3.14159265 DOLS 49

C READ INPUT DATA DOL.S so
100 READ(591) DOLS 51

REAO(5,ZINLOSL.LOADMMFNIbF DOLS 52
C WRITE TLTLE OF DATA AND PROBLEM DOLS 53

WRITEI6, 1) DOLS 54
C WRITE TYPE OF LOADING AND RANGE Ch M AND N DOLS 55

IF(LOAD.EQ.1.) IORITE46941 DOLS 56
IF(LCAO.EQ.2.? WRIIE(695) DOLS ST
IF(LCAO.EQ.3.) WRITEI696) DOLS 58
WRITE(6,71 MOMFNGN4F D0OLS 59

C READ ORTI4OTROPIC LAYER PROPERTIES DOLS 60
00 110 11,vNL DOLS 61

110 READ15,3) LNtI),EXXfIhEYYII), NUXYII).NIJX()GXYIIITI). DOLS 62
IF(OSL.EQ.1..ANO.NL.EQ.11 GO TC 130 9DOLS 63

C WRITE ORTMOTAGPIC LAYER PROPERTIES DOLS5 64
WRITEI6,6) NL D0LS 65
DO 120 Is1,Nt DOLS 66

120 WRITE46,9) LNII),EXX(I),EYY1I),NUXY(I1,NUYXII),GXY1I),TIII DOLS 67
C:ES FO PRESENC GOF TOTOI FFES 8AYROL 69

C ES F r REENC GO TO RPC STFFES LAEROLS 68
CZERO OUT PREVIOUS ORTHOTROPIC STIFFNESS LAYER PROPERTIESDOST

BX.0. DOLS 70

8Y=. CLS 72
8yxY!O. 801. 73
NUXY8.O. BOLS 74
TOSL-O. DOLS 75
OX*O. D0OLS 76
DY.O. BCLS 77
OXYMO. BCLS 78
NUXYD=O. BOLS 79
GO TO 140O DCLS 80

C READ ORTHOTROPIC STIFFNESS LAYER PROPERTIES SCLS 81
130 READ15,31 8XbYBXYNUXYB#TOSL 8DO.S 82

T1I )-TOSL 801S 83
READ15,3) CX,OY,DXY,NUXYD BOS 84

C WRITE ORTHOIROPIC STIFFNESS LAYER PROPERTIES 801S 85
wRITE(691O) BX,98Ye XYv NUXY8,DOX,9DyeDXYvNUXYD, TOSL BOLS 86

C READ ANi; WRITE RING AND STRINGER PROPERTIES 8015 87
140 RE~ri5,3) ER,AR,ZR,114.GRJR,A BOLS 88

REAC(593) ESASv1SpI SGSJSv8 8013 89
WRITE(69111 ERIl.1ESISARGRJRASGSJS,ZR.AolS.8 BOLS 90

CREAD AND WRITE BASIC GEOMETRY 801.5 91
READI5.1 LRtDELTA 80L3 92

fWRITF.(6. 12) LRDELTA SCLS 93
CCALCULATE~ FUNCTIONS OF T~EEATCT OSANTS 803 94

DO 150 !-1,NL 801.5 95
Klill )sEXXII)/I.-NUXY(I )*hUYX(I)) 8015 96
K12(I )-NUXY( I)*KTII(I1 801. 97
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S221 R)iEYTfI I/ I UXI)*J jII) DOLS is
150 933(1)vGXYIII IOLS 9"

C CALCULATE DELOS OF THE VARIOUS LAVERS DOLS 100
00 160 I11NL DOLS 101
:F(I.EQ.1) OEL(1)mTfil 3DOLS 102
IF(I.NE.1) DELII)OEL13-11.TII) DOLS5 103

160 CONTINUE DOLS 104
C ADJUST ZR £160 ZS TO REFERENCE SURFACE DOLS5 10S

IF(ZR.6T.O.I ZX a ZR.OELifti-DELTA) DOLS 106
IF(ZS.GT.O.) ZS 0 ZS*(DELCNLI-DELTA) D0OL5 107
IFIZR.LT.0.) ZR ZR-DELTA DOLS 106
IF(Z$.LT.0.) ZS a US-DELTA 301.5 109

C CALCUJLATE EXTENSIONAL, C0tJPLtNG, AND BENDING STIFFNESSES DOLS 110
C ZERO OUT $Sv COSP AND DO$ PRIOR TO SUMMATION Rots III

811-0. DOLS 112
812=0. DOLS5 113
522-0. SOLS 114
633-0. 00LS 11s
CuI-0. DOLS 116
Cl2w0. 60OLS 117
C22-0. DOLS 118
C33-0. SOLS 119
01 100. DOLS 120
012&0. SOLS 121t
022-0. DOLS 122
033-0. DOLS 123
DO 190 1 - 1NL SOS 124
IFII.NE.1) 60 TO 170 DOLS 125
EXTmDEL(I1) DOS 126
COUP-1./2.10(OEL(I)*2-2.*ELTA*9ELII) D0LS 127
SEND-I 1./3.I'(DELI 1l**3-3.*0ELTA*0EL( 1l**2.3.*DELTA*S2*OELtiI SOLS 120
GO TO 180 DOLS 129

170 EXTOELII)-DELlI-I DOLS 130
COUPl.12.)*iDELlI)**2-DfLl1-1)**2)-2.*DELA*IDELI1)-DEL4I-1I))I DOLS 131
*ENDIIl./3.eIIOELII**3-DELI-1)*3-3.OELTA*IDELIII*2-DELI-1SOLS 132

10*1*3.*OEtTA**2*IDEL(I I-DELII-11) D0LS 133
180 l31D11.K1I II*EXT DOLS 134

8S122K121 IJ*EXT DO.S 135
822-822#922( IJ*EXT DOLS 136
833S833+K3?I I)*EXT 6D6.5 137
C11-C114A13115*COUP DOLS5 133
Cl2nCl2+Kl I I)COUP DOLS 139
C22-C22*K22 1J*COUP SOLS 140
C33-C33*K33 I)*COUP SOLS 141
O11=011*Kl1 1)*BEND DOL.S 142
012-D12+K12' JI*SENO DOLS 143
022wO22*K22( I)*8ENO DOLS 144

190 033uO33.K331 II*BEND DOLS 145
C INITIALIZE D0OLS 146

ADSSIl. 7E5 D015 147
IFILUAD.EQ.2.) GO TO 300 DOLS 148

C CALCULATE AXISYMNETRIC BUCKLING LGAOS UNDER AXIAL OR HYDROS TIC DOLS 149
C LOAOING FOR A RANGE OF 00 TO 4*MF, AND PRINT HININUN LOAD DOLS 150
CINITIALIZE SOLS 151

AXIM-4.'N4F DOLS 152
N-MO SOLS 153
0R014111-.8E35 SOLS 154
ORCHHZ-.9E35 DOLS 155

200 NPLNM*PI/L DOLS 156
C CALCULATE A VALUES SOLS 157

All1IBl I.BX*ES*AS/SI*MPLO*2 D0OLS 158
A12w0. DOLS 159
Al3-S12.NUXYS*BX) *NPL/R*ICII*ES*AS*ZS/S)*NPL*v3 DOLS 160
A22f'ft33.8xY I*NPL**2 8CLS 161
A23-0. DOLS 162
A33-IO11.OX4ES*IS/5,ES*AS*ZS**2/5)eNPL**4,12./ft)*C1Z.NPL.*2,61./RSOLS 163

1'2)* (822*8YER*AR/A) DOLS 164
PARtT.A33.I(A12*A23-A13*A22J/IA11*A22-A12e*Z1))A13,((A12.Ap',ALIeA28CLS 165
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1331f1l'A22-AI2*s2)l*A23 DOLS I"
C TEST FOR TYPE OF LOADING* CALCULATE SAUCELING LOAD0 (MI OR PRESSURESS sou. 167
C AND STORE LOAD IN ADDRESS GAWK IDINATE AT ABSCISSA M) 5(3.S 148

IFILOAD. 14.1.1 OROMPART18PL002 D0OLS 169
IF (1.040.0..3l GODRPART/( .5*XPL**2) DOLS 170

C TEST FOR ABSOLUTE MINIMUM AXISYMETRIC 2UCXI tMG LOAD D0O.S 171
C OROMM. IS THE ORDINATE AT ABSCISSA Nt-l 501. 172
C ONDMM2 !, INE ORDINATE AT ABSCISSA *-2 DOLS5 173
C TEST To sEZ WHETHER OROM IS INCREASING Olt DECREASING DOLS 174

IF6OB0Nl.Gy.UaDOMM3 Go TO 210 30O.5 I1S
C ORON DECREASING FROM ORt EQUAL1 TO ORONM D0LS 114

IFM.EO.AXIMI WRITE6#19) ORDMM1 SOL$ 17?
GO TO 230 DOLS 116

C ORD" INCREASING FROM ORONMI O01. ?7
210 IFIONDMIM2.6T.DORDMI) 4O TO 220 301. ISO
CNO RELATIVE MINIMM FOUND D0OLS 161

GO TO 230 D0OLS 102
C TEST FOR ABSOL'ilE MINIM" DOLS 103

220 IFIORDN.I.tASINI GO TO 230 654S 1#4
C NEW ABSOLUTE XMINUM FOUND DOLS 185

ASHM-OROPPI 30LS 164
AISlqnM- . IOU is7
ASSN.O. 1065 186

230 IFIM.EQ.AAIM) GO TO 240 DOL.S 189
C STEP H DOLS 190

NMftM*. BOIS 191
ON-OO RVMM90N 1DOLS 1192
OftOMNisomom DOLS 193
GPO TO 200 DOLS5 194

C WRITE iiXISYMMETRIC BUCKLING LOAD D0OLS 195
240 lFiLnAO.EQ.I.) WRITE(6*131 AS PMNABS DOLS 196

IF(LOAI,.EQ.3.) WRITE(69141 ABSMN,ASSM DOLS 197
C CALCULAT'. ASYMMETRIC BUCKLING LOADS FOR A SPECIFIED RANGE OF M AND N DOLS 196
C INITIA1.IL" BOSS 199
360 MwNG D0OLS 200

ANONN~n.SE35 DOLS 201
IF(LCAO.EQ.2.I WRITE(4613) DOLS5 202

C BEGIN M LOOP DOLS 203
310 PPLnM*PI/L DOLS 2041'C INITIALIZE FOR N LOOP 8015 205

NUNG DOLS 206
*ORONMIS. 8E35 D0OL5 201

ORDNM2=. 9E35 BOLS 208
jC BEGIN N LOOP BOLS 209

320 NR*N/R BO~L 210
C CALCULATE A VALUES BOLS 211

AlliIS1*XESAS/SNPL*21S33SXY)SpiRs.2 D0OLS 212
412. (612.MUXY&S*633.SXY)aMPLeNR DOLS 213

-A13-(112.MUXYSBX)eMPL/R,(C1 1*ES*AS*ZS/B)*RPL*03.(C'12.2..C331*NPL*IOLS 214
114RO*2 D0OLS 215
A22.(B33.BXY)*MPL**2.(522.gYER.M,/A,*NR..2 80LS 216
A23=4C12.2.*C33)*NPL*.2*Ne,( 122*IY.ER*AR/AI*NR/R,(C22,ERaAR.ZRA).eOLS 21?
INR*3 DOLS 218
A33- (D11*DX*ESk IS/8*ESeASeZS*s2jislMPL*e4,(2.*(D12,hUXyD*OX,,4..(0.OLS 219
133.DXYI.6SjS/8*.AJR/I)*PLO*20*MR*.2+1022,DYER.IR/AER.AR.LR.*2,AIBOIS 220
2*NR**4*E2.JR)*C12*NPL**2,I2.jR)sIC2+ER1 tR*ZR/AI*MR*S2.(1.IR**2)*ISOLS 221

3822*Y+ERORIA) OLS 222PART.A33.( (Al2*A23-AI3eA2/(AIL*A22-A12e.2)A3g(AI*A3AI*A2OLS 223
135/fAI1sA22-AI2**2 3)*A23 501.5 224

C TEST FOR TYPE OF LOADING, uALCULATE BUCKLING LOAD (MX OR PRESSURE), DOLS 225
C AND STORE LOAD IN ADDRESS ORON (OPOINATE AT ABSCISSA N) 801.5 226

IF(LOAO.EQ. 1.)OR0N.PART/MPLs*2 SOLS 221
IF(LOAD.EQ.2.IORDN-PART RONRO02) 8OLS 228
IFILOAD.EQ.3.IORON.PART/(R*(.5*MPL..2,MR..21I 801.5 229

C BEGIN TEST FOR RELATIVE MINIMA ANG ABSOLUTE MINIMUM 8015 230
C U)RONMI IS THE ORDINATE AT ABSCISSA h-I 8015 '31
C ORONM2 IS THE ORDINATE AT ABSCISSA N-2 BOLS 232
C IEST FOR EQUAL OR MEAR EQUAL ORDINATES B015 233
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S

EF(ABS(2 .. (IOR-OtMN1II(OROe.Iin~ zII.i;.1l--3 GTO 330 BOLS 234
O OINATES ARE CLOSE ENOUGH TO CAUSE TIOUBLI IN THE SEARCH FOR DOLS 235

L RELATIVE MINIMA# SO BEST ilb"o"TIN IS TO WRITE ORDINATES OLS 236
NM NIN-. DOLS 231
WRITE(6*21k RON0eNNt.NO8tnW.N RLS 23S
GO TO 380 DOLS 239

C TEST TO SEE WHETHER 010 S INCREASING OR DECREASING em.S 240
330 IFIORDN.GT.OBOMNl) GO TO 340 DOLS 241

C OCRN DECREASING BOLS 242
IFIN.EQ.NFI WGITE(6v2O) D0.S 243
GO TO 310 *LS 244

C OROM INCREASING DlOLS 245
340 I0:9ORDM2.GT.ORONNII GO TO 350 DOLS 246

C NO RELATIVE MINIMUM DOLS 247
GO TO 360 C0LS 249

C TEST FOR ABSOLUTE MININUM BOLS 249
C AMOMI IS THE ABSOLUTE MINIMUM VALUE OF ORON IN THE W-1 LOOP BOLS 250

350 IFIN.EQo.-I..ANO.DeMI.LL.ARCNNII AMONNIORDNtl DOLS 251
IFIM.EQ.ND.ANOoNC.oEMF.AD.OGRDNNI.LT.ANONlI NRITE16.19 IOLS 252

360 IFIORDMI.GT.AfSMINI GO TO 370 BLUS 253
C NEW ABSOLUTE MIIRMUM FOUND DOLS 254

ASSMINOODNPI BDOLS 255
ADS.,N D.OLS 256
A*SNwN-. 61.S 257

370 RELNIN=CRDNNI DOLS 2s
RELNN-I. IOLS 259

C WRITE RELATIVE MINIMUM WITH CORRESPONDING M AND N BOLS 260
WRITFIO, 16fNRELNINvRELN DOLS 261

380 IF(N.EQ.NF) GO TO 390 D.OLS 262
C STEP N DOLS 263

N=N*1. DL.S 264
ORDNI2-ORDNNI DOLS 265
ORONNIORDN OLS 266
GO TO 320 SOLS 267

390 IF(M.EQ.NFI GO TO 395 DOLS 268
C STEP N DOLS 269

Mnx+I. lOLS 270
GO TO J10 BIOIS 271

C WRITE ASSOLUTE MINIMUM WITH CORRESPONDING M AND N lOtS 272
395 IF(LOA,9.EQ.1.) WRITEi617)ABSNINtABSNABSN DOLS 273

IFILOAOEQ.2.) WRlTE(6tS)ABSPINA9SMvA9SN lOLS 274
IF(LOAO.EQ.3.1 WRITE(6vl8)A8SPINABSNvA8SN BOL.S 275

C RETURN TO S, 'NNING TC READ NEXT DATA CASE DOLS 276
GO TO 100 lOLS 277
END DOLS 276
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APPENDIX D

BONDLESS, LAYERED SHELLS

The objective is to define a mathematical model for a circular

cylir drical shell of multiple isotropic layers with no bond between

the layers. This configuration is of interest as a lower bound to

layered shells with shear-deformable bonds between the layers. The

Kirchhoff-Love hypothesis is employed in all previous sections, but is

valid only if the bonds between layers are non- shear-deformable.

Accordingly, certain nev definitions must be established. It is con-

venient to work within the framework of the orthotropic stiffness

layer feature of the computer program (see Section A. 2 of

Appendix A). Certain stiffnesses and so-called Poisson's ratios

must be defined, namely, quantities associated with extension

(B , By B xy and v xy B ) and those associated with bending

(Dx, Dy, Dxy and vxyD).

The extensional stiffness of a layered shell is not affected by the

presence or absence of a bond between the layers, i. e., it remains

N

Bx =By z 2 Bk  (D-I)
kzl1

Similarly, the resistance to in-plane shear is unaffected, so

N

Bxy :-f Bk (1 - Vk ) /Z (D-2)

k:l
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i.

if the force-strain reiations are written in the form

N

Nx =E Bk (Exk + VkCyk)
k= I

(D-3)

N
N J

Ny =, Bk ("yk + k fxk)

k= I

and it is stipulated that the layers have the same strains, i. e.,

xk fx
k = 1, N (D-4)

fyk 
y 

then the so-called Poisson's ratio for extension can be identified as

N

SBk vk

k=l (D-5)

xyB = vB N

B k

Note that vB is a geometrcal as well as a material property.

The bending stiffness of a bondless, layered shell is the sum of

the bending stiffnesses of the individual layers since the layers act

with some measure of independence except for the requirement that the

layers do not separate, i.e.,

* N

Dx = Dy Dk (D-6)

k:1
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where Dk is the. bending stiffness of the kth layer about its own middle

surface. Note that there are no terms such as occur in the transfer axis

theorem for moments of inertia, i. e., no (area) times (distance squared)

terms. Consequently, the bending stiffness is greatly decreased from

the perfect bond case.

The consistent definition for the twisting stiffness follows from

the stipulation that each layer independently resists twisting. Thus,

N
Dxy E Dk (I - k ) /(D7)

k=l

In aralcgy to the situation for extension, it is stipulated that the

layers have the same changes in curvature, i. e.,

Xxk Xx I

k = 1, N (D-8)
Xyk- Xy

Then the so-called Poisson's ratio for bending is obtained by use of

the moment-change in curvature relations as

N
Dk v

V xyD (D- 9)
D

Again, as with V B V D is a geometrical as well as a material

property.

The above approach implies that the layers have the same dis-

placements and the same curvatures, i. e., all layers take the same
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shape. This implication is reasonable as long as the layers do not

separate.

When the layers are in contact, the membrane circam feren-

tial strain is essentially the same in all layers if the su.n of the layer

thicknesses divided by the radius of the shell reference surfact , small,

i.e., a thin, layered shell. Thus, under lateral pressure, which is

carried as membrane circumferential stress, ' , in the present
y

th
buckling theory, 0ry in the k layer is proportional to the exten-

th
sional stiffness of the k layer. Accordingly, the lateral pressure

on each layer is given by

.I Bk

N p (D- 10)

k= 1

where p is the lateral pressure on the layered shell. Thus, as a

crude lower bound to the case of a bondless, layered shell, each

layer must be thick enough to resist buckling under the pressure

determined by Eq. (D- 10). In addition, the layered shell with stiff-

nesses given by Eqs. (D- 1), (D-Z), (D-5), (D-6), (D-7), (D-9) must

be thick enough to resist buckling under p .

Eccentrically stiffened, bondless, layered shells can be treated

by appending stiffeners to the orthotropic stiffness layer in the manner

discussed at the end of Section A. 2 in Appendix A.
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APPENDIX E

TWO-LAYERED, BONDLESS SHELLS WITH CIRCUMFERENTIAL
CRACKS IN THE OUTER LAYER

The objective is to define a mathematical model for a circular

.zylindrical shell which has two unbonded, orthotropic layers and cir-

cumferential cracks in the outer layer (see Figure E-l). The princi-

pal axes of orthotropy must coincide with the shell coordinate axes.

The orthetropic stiffness layer feature of the computer program (see

Section A. 2 of Appendix A) is used in the calculations. Accordingly,

certain stiffnesses and so-called Poisson's ratios must be defined,

namely, quantities associated with extension (Bx, By, Bxy , and

"xyB) and those associated with bending (Dx, Dy, Dxy , and VxyD).

Because of the circumferential cracks in the outer layer, the

extensional stiffness in the axial direction is merely that of the

inner layer, i.e. B x = 0. However, both layers are effective in

resisting circumferential extension. Thus,

Bx  Bxl

(E-l
B = B xl+ B(E

No axial strain develops in the outer layer, i. e., ExZ = 0. Thus,

the force-strain relations are

N x Bxl (exl + VxyBI Eyl)

N(y cB (E + vB 6x + By 2  (E-2)
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Figure E-1. Cutaway View of a Two-Layered Circular Cylindrical Shell
wil.h (Exaggerated) Circurnfc rential Cracks in the Outer Layer
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Moreover, because the layers do not separate circurnferentially,

y - = E (E-3)

Accordingly, the force-strain relations become
N -- B (E +V E,)

Nx xx xyB y

N = B (IE +vyxB x) (E-4)

where B and B are defined in Eq. (E-l), andx y

VxyB ;VxyB1

(E-5)
VyxB VyxBl By I / (Bl. + By 2 )

Note that the reciprocal relations

VxyB Bx = VyB B (E-6)

are satisfied for the two-layered shell because they are satisfied

for the inner layer, i. e.,

VxyB1 Bl = V yxBI By (E-7)

For an isotropic inner layer, Eq. (E-7) is an identity.

The inner layer carries all the in-plane shear because the

outer layer is cracked. Thus,

B =B (E-8)xy xyl

For an isotropic inner layer,

Bxyl EIt 1 /2(1 + vl) (E-9)
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Reasoning parallel to the above leads to the following defini-

tions for the quantities associated with bending.

Dx (E-10)
.1D = D +D

Dy yl DyZ

i xyD - VxyD 1
(E-l1)

VyxD -VyxDl Dy 1 /(Dy 1 +Dy z )
Dy= (E-l2)

D Y D xyl

where, for an isotropic inner layer,

D - E1t13 /24 (1 +V 1) (E-13)Dxyl 1

in the definitions in Eqs. (E-10) to (E-12), it is implicit that

Xyi Xy (E-14)

in analogy to Eq. (E-3). Both Eqs. (E-3) and (E-14) are a result of

no circumferential separation of layers. In addition, it should be

noted that the bending stiffnesses of the layers in Eq. (E-16) are

about the middle surface of the respective layers because o" the lack

of bonding between layers.

* Eccentrically stiffened, bondless, layered shells with circum-

ferential cracks can be treated by appending stiffeners to the ortho-

tropic stiffness layer in the manner discussed at the end of Section

A. 2 of Appendix A.
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APPENDIX E

TWO-LAYERED, BONDLESS SHELLS WITH CIRCUMFERENTIAL
CRACKS IN THE OUTER LAYER

The objective is to define a mathematical model for a circular cylindrical

shell which has two unbonded, orthotropic layers and circumferential cracks

in the outer layer (see Figure E-l). The principal axes of orthotropy must

coincide with the shell coordinate axes. The orthotropic stiffness layer

feature of the computer program (see Section A. 2 of Appendix A) is used in

the calculations. Accordingly, certain stiffnesses and so-called Poisson's

ratios must be defined, namely, quantities associated with extension (Bx , By

B xy, and vxyB ) and tbose associated with bending (D x , Dy, D xy, and vxyD).

Because of the circumferential cracks in the outer layer and the lack

of bonds between layers, the axial force in the outer layer is zero, i.e.,

NxZ =BxZ (x 2 + VxyBZ 'yz= (E-l)

The remaining segments of the outer layer are analogous to plane stress

ring elements, the axial stiffness of which is finite. Accordingly, from

Eq. (E-l),

e x2 VxyB2 y2 (E -2)

The force-strain relations can then be written as

Nx = Bxl (Exl + VxyBl 1Eyl

(S-3)
N=B (C + V Ex ) + B (C r V)

y yl yl yxBl 1y yZ yxB2 XZ

Moreover, because the layers do not separate circumferentially,

yl y2 C y (E-4)
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Figure E-1. Cutaway View of a Two-Layered Circular Cylindrical Shell
with (Exaggerated) Circumferential Cracks in the Outer Layer
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whereupon, with Eq. (E-2). the force strain relations become

N B x(e x + v )
x xyB y

(E-5)

N =B (c +V xf
y y y yxB x

where

B =Bx xl
(E-6)

BB + B (1 - v)BI = +(Bl ByZ yxBZ vxyB2)

C x  C CX 1

and

vxyB = xyB l (E-7)
v yxB = VyxB 1 B yI/B y

Note that the reciprocal relations

vxyB B x = vyxB y (E-8)

are satisfied for the two-layered shell because they are satisfied for the

inner layer, i.e.,

v B =v B (F. -9)xyBl xl yxBl yl

For an isotropic inner layer, Eq. (E-9) iE an identity.

The inner layer carries all the in-plane shear because the outer layer

is cracked. Thus,

B =B (E-10)xy xyl

For an isotropic inner layer,

BxyI =Eltl/2(l + v) (EII)
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Reasoning paralel to the above leads to the following definitions rQ C

the quantities associated with bending: CA-

D = D I --.
x xl

D y D y I + Dy z (1 - vyxD 2 vxyD2) (E -12)

Dxy = Dxyl

and

VxyD V xyD I
(E-13)

VyxD VyxDl Dy 1ID y

where, for an isotropic layer,

D = Elt3/ 24(1 + vl) (E-14)

In the definitions in Eqs. (E-12) and (E-13), it is implicit that

Xy1 = Xy2 = Xy (E-15)

and

Xxi = Xx  (E-16)

in analogy to Eqs. (E-4) and (E-6). Both Eqs. (.-4) aud (E-15)

are a result of no circumferential separation of layers. In addition, it

should be noted that the bending stiffnesses of the layers in Eq. (E-12)

are about the middle surface of the respective layers because of the lack

of bonding between layers.

Eccentrically stiffened, bondless, layered shells with circumferential

cracks can be treated by appending stiffeners to the orthotropic stiffness

layer in the manner discussed at the end of Section A. 2 of Appendix A.
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